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EQUATIONS OF THE DYN~ICS OF SETS OF RENTABILITY 
IN PROBLEMS OF OPTIMI~TION AND CONTROL 

UNDER CONDITIONS OF UNCERTAINTY* 

A.I. PANASYUK 

An integral funnel equation is used to interpret the problem of control 
under conditions of uncertainty in terms of the dynamics of sets. 
Localization of this equation is obtained. The right-continuity of the 
bound of the set of reachability is proved, on the basis of which the 
dynamics of the set of reachability is reduced to an analysis of the 
local integral funnel equation at points of the bound of the sets of 
reachability. The local integral funnel equation reduces to a differential 
relation at the points of continuous differentiability of this bound, 
from which partial differential equations of the dynamics of the sets of 
reachability in the space of the positions, in the conjugate space and in 
the parametric form of the notation are obtained. A classification of 
these equations is given in accordance with the forms of representation 
of the sets and surfaces in Euclidean space. Bellman's well-known equation 
serves as a special case of the equation in the space of positions. A 
derivation of the maximum principle with a normalized conjugate system 
is presented for the boundary solutions. Its normalization eliminates 
the increase in the norm of the vector of conjugate variables and increases 
the time for the numerical calculations. The optimal control problem 
reduces to one of obtaining boundary solutions. A considerable number of 
papers (/l-5/, etc.) cover control under conditions of uncertainty. 

I, Control under conditions of uncertainty as a problem of the dynamics of 
sets. We consider the control system (the dot denotes differentiation with respect to time) 

x’=f*(t,x,v,u), XER*, t,,\<t<T. UEUCR~ (1.1) 

Here u is the control vector, and u =u(t) is the vector of perturbing influences, whose 
exact values a a priori unknown, but the bounds of whose possible values, specified by the 
set U, are known. The law of control is usually specified when designing a system in the form 
of a program o = u(t) or regulator u = u(t,m). Then the family W of trajectories r (% to < 
t< T, corresponding to the different laws of variation of the indeterminate quantities 
u(t)E u, to<,<& T, correspond to each initial value x0 of system (1.1). We can characterize 
the family W obtained by its section, which consists of the possible values of the vectors 
of the positions of the system at the instant t 

D (t) = D (t, t,, x,,) = (z (t): x (.) E W} 

The set D(t) reflects the indeterminate form of the vector of the positions of the 
system, caused by the uncertainty of the law of variation uftf. Knowing the evolution of D (t), 

we can estimate the dynamic uncertainty of the state of the system, which is an important 
component of the analysis and synthesis of the system under conditions of uncertainty. In 
particular, if we specify the bounds D, (t) of permissible deviations of the state of the 
system from the prescribed law of their variation, caused by the perturbations u(t), which is 
written in the form of the inclusion D(t)c:D,(t), the synthesis of the regulator v (t, x) is 
subject to the additional condition that this inclusion holds. Putting f (t. 5, 24) = f* (t, x, v (t, 

x),u), we rewrite (1.1) in the form 

x- = f (t, t, uf, u E U, to < t < T W2t 

Then u will be the vector of controls, and D(t,t,,x,) will be the set of reachability 
of system (1.2.). 

2. The integral funnel equation. we shall put G(t,x)= conv f(t, z,U) , a convex 
envelope of the set f(t,x,U) of permissible velocities of system (1.2) and shall consider 
the differential inclusion 

5' E G (t, z), SEER” WI 
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We shall denote /6/ by K(Rn) the metric space vf the compacta from N" with the Hausdorff 
metric 

a (X1, X,) = mar {B (X,, XA B (X,, X1)), X,, X, CZ? R (R”) 
B (Xl, X2) =x","x" d(s, X2); d(s, xa,=xIpEi /I 5 - 5' II 

I( XII = <s, 5)"1, <s, s') == 51x1' + . . . t_ 2& 

and shall denote by Kv(fi") its subspace, which consists of convex compacta. Unless otherwise 
stated, we will further assume that G(t,s) is a continuous mapping R”+‘+ Kv(P), which 
satisfies Lipschitz's local condition with respect to z, i.e. for any (t,r)~ Rntl &>O and 

L>O will be obtained, such that a (G (t', m'), G (t', 2")) < L 11 z' - x")11 when II s - 5' II < e, Ii x - 
~“11 <e, It-t' /<E. We shall call the absolutely continuous function z(t), t,<t .< T, which 
satisfies (2.1) almost everywhere in it,, TI, its solution or trajectory. 

The set of right-hand ends r(T) of all possible solutions of (2.1) 5 (t), to < t < T with 
the initial condition spa, is called a set of reachability d (T,t,,A,) with the initial 
set A, c R”. Below, unless otherwise stated, by the solution we mean the solution of (2.1). 
Sets of reachability are an important characteristic of a controllable system and in aggregate 
are essentially another equivalent description of it. It is well-known /7/ that taking the 
convex envelope convf(t,r, iJ) of a set of permissible velocities of system (1.2) gives the 
closure cl D (t,t,,x,) of its sets of reachability, i.e. cl D (t,to,xO) = A (t, t,,x,,). This enables 
us to reduce the analysis of D(t,t,,x,) to an examination of A (t,t,,x,). 

An equation of the dynamics of the sets of reachability is obtained in /8, 91: 

lima-ra(R,(t)R(t +n))=O; 
0-o; 

Ro(t)gXeQtl) [r -t aG(t, r)1 (2.2) 

and is called an integral. funnel equation in /lo-12/. Suppose X (to)E K(Rn). The continuous 

mapping R (t) = R (t, 1,, X (to)): [to, t, -t rl) --f K(R”), q >O, R(t,) = X (to), which satisfies (2.2) 
when tE i&,1, $- q), is called a solution of Eq.(2.2), or an R-solution with the initial set 
X (to), produced by G(t,x) /8, 9/. The ordinary differential equation in R” is a special 
case of (2.2), and the theorems of existence, uniqueness and extendability of the solutions 
are transposed to (2.2) /8-12/. In particular, the unique R-solution R(t,t,,X (to)), defined 
in the maximum interval of the existence &,,< t< o = o (to,X (to))< m, exists for X (t,)~ 5Cf.R"). 

Following 18, 9/, we will obtain the connection between the R-solutions and the sets of 
reachability. 

Theorem 2.1. The equation R (t, t,, X (to)) = A (t, to, X (to)) holds for X (tp) E K (Rn) when 

to Q 1< w. 
Unless otherwise stated, we shall everywhere assume that X(t) is a continuous mapping 

x (.): 110, T)+ K (R") (2.3) 

The aim of this paper is to obtain the conditions for X(t) and the sets of reachability 
to be identical, i.e. 

X (t) = A (t, to, X (t,)) when t, < t < T (2.4) 

If T>o, it follows from Eq.(2.4) that the mapping (2.3) is discontinuous when t = 0. 
Therefore Eq.(2.4) and the continuity of X(t) guarantee the inclusion 2' E ft,, WI, From the 
previous analysis we will obtain the basic condition for (2.4). 

Theorem 2.2. For Eq.(2.4) to hold, it is necessary and sufficient that the mapping (2.3) 
of X (t) satisfies the integral funnel equation when to\< t< T 

3. Localization Of the integral funnel equation. The localization of the 
conditions contained in the previous theorem is the basic content of this paper. For the set 
XC R” we use V,(X), t:>O to denote its closed e-neighbourhood in II". Consider some 
mappings XI I.), X, (v): !O,u')+ K (fin), X E K (R”), where the set X can be single-point. If 
e>O and a,>0 is obtained for any cl>O, such that 

Xl (a) n V, (x) C V,, (X2 (a)) when 0 < CJ < co, x E X 

X2 (0) n E (4 C V,, (Xl (a)) when 0 < u < usI x E X 

we shall write 

X 
Xl(U) = x2 (0) 

(3.1) 

(3.2) 

(3.3) 

We obtain the following results from the definitions. 
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Theorem 3.1. The ratio 2 is an equivalence ratio. 

Theorem 3.2. The following conditions are equivalent for the continuous mappings X,(U), 

x, (u): lo, u’) -, K (P), x1 (0) = x, (0) : 

(i) oK&$J-% (Xl (a), X$(U)) = 0, (ii) Xl(U) “22 xz (a) 

Theorem 3.3. The following conditions are equivalent: 
(i) (3.3) holds, (ii) the following relation holds 

Xr(~)k.Xxp(u) when ZE X (3.4) 

Proof. The implication (i)+(ii) is obvious. We shall prove the implication (ii)=+(i). We 
shall show that S>O and s>O will be obtained using V>O, for which the following 
inclusion holds: 

x1 (0) n v, (4 c vow (x, (0)) for 0 6z u < ob, z E X (3.5) 

According to (3.4), E=~(z)>o and oo= oo(z)>O will be obtained using ZEX, such that 

x, (a) n vgx, (4 c vee (x, 10)) for 0 < a < u. (9 (3.6) 

We shal.1 choose a finite subcovering Xc(U Vi using i( tak), Vi= IJ~(~,) (zi), Zi E x from 
the coveKing of the compactum Xc{UV,,(x) using zm X). Then V,(X)c{U Vi using 1 <i <k) for 
some 6~(O,e). Hence by virtue of (3.6) when oqa<c@= min (By, . . . . Q(Q)) the validity of the 
following inclusions follows: 

Xl(G) n v6 (x) C &yGh. (XI (6) n vi) c vcn txa fG)) 

which implies (3.5). We shall obtain the satisfaction of condition (3.1) apart from the 
notation. The satisfaction of condition (3.2) is proved in a similar way. 

We obtain the fixst localized characteristic of the set of reachability from Theorems 
2.2, 3.2 and 3.3. 

CorolLary 3.1. For Eq.(2.4) to hold, it is necessary and sufficient that 

X,(t)& X (t + a) for z E X (t), t, Q t < T (3.7) 
This result enables us to consider (3.7) as a local integral funnel equation at the point 

5. The set of reachability has the following important property. Any of its inner points 
belongs to the interior of the set of reachability during some time. Then Eq.(3.7) holds in 
a trivial way at the inner points of the set of reachability, and it is sufficient to consider 
Eq‘(3.7) only at the boundary points. This will enable us to use partial differential equations 
later to describe the dynamics of the set of reachability. To give a mathematical formulation 
to these considerations, it is necessary to analyse the topological properties of the set of 
reachability. 

4. Boundary solutions. Theorem 4.1. Suppose s(t),tc<$<ft, is the solution of (2.1) 
andtheconverging sequances ti -+t,, gi-tz(t*), i+ m are obtained. Then i. will be sought and 
the sequence of solutions y, (t), to< t< ti, i > i, of the inclusion (2.1), such that yi(t,) = y, 
and 

t,lsm;z, t ) II h(t) -=@I /I -to as i + 00 
tm * 

Proof. We shall define the vector-function b: Ra"+l-+Rn using the condition 

b (t, Y. rl) = {b = G (t. Y): U b - q II = d (cl, G (t, Y))) 

By virtue of the convexity and continuity of G&z) the function b(t,y,q) is continuous. 
We shall define b(t, y)= b(t,y, z'(t)) and shall consider the differential equation 

y' = b (1, Y) (4.1) 
where the equation is understood almost everywhere. The conditions of the theorem of the 
existence of Caratheodory's solution hold for (4.1). The solution of (4.1) serves as a 
solution of (2.1). By virtue of the assumptions about G(#,I) and the definition of 6(&y) the 
solutions of Eq.(4.1) y,(t), h -Q < t< tt,qi>O with the boundary conditions pi= yg satisfy 
an inequality of the Gronwall type for the deviation IIyt(t)--s(t)U. We can therefore define 
them when tos t<tt, starting from sOme i= ip, and yi(t) satisfy the conclusion of the theorem. 

Hence we obtain a number of corollaries using the indirect method. For MCIt,,m) we 
shall put 

CM, A (M, to, Ao)) =l& (t. A (t, to, Ao))c II"+' 



408 

Coroliarg. 4.1. Suppose A, cm R", M c It,, CD) are open sets. Then {nil, A (!W, t,, A,,)} is 
an open set. 

4.2. Suppose A,C Rn is an open set. Then A (t*, t,, A,) is open for t, > 2,. 
4.3. Suppose xi-++ E A (T, to, X it”)), ti + T as i-+00, xi g A (ti, t,, X (TV)). Then any 

solution (2.1) 3z(t),to < t< T with the boundary conditions x(t,)E X (t,,), z?(T) = 51 satisfies 
the inclusion 

x (t) E dA (t, t,, X (to)) when t, < t < 1 (4.2) 

4.4. Suppose XT E A (T, t,, X (to)), ZT $ A (t, t,, X (to)) when t, k ( t< T. Then any solution of 
the inclusion (2.1) x(t),t,\<t.< 2’ with the boundary conditions x 0,) E X (to), x (T) = 57 
satisfies the inclusion (4.2). 

4.5. Suppose x(t), to<.<< 2' is the solution of (2.1), which satisfies the boundary 
conditions x (to) E X (to), s(T)E r3A (T,t,,X(t,)). Then x(t) satisfies the inclusion (4.2). 

We shall call the solution of (2.1) x(t), to<<< T, which satisfies (4.2), a boundary 
solution from the initial set X(t,), whilst it is not generally required that (4.2) holds when 
t = T. 

5. Right-continuity of the bound of the set of reachability. Consider the 
mapping (2.3). 

Theorem 5.1. The following relation holds for t E ItO, T) : 

fl (ax (t), 8X (t + u)) --f 0 as u -+ 0 + 

Proof. The continuity of X(t) implies the convergence or(X(t), X(ti-o))-.U as o-O+. 
Then aO(z)>O will be obtained with respect to a>0 and ZE ax(,), such that V,(z) n ~?X(t+o)+ 
@ when 0 fs IO, so (3)). We shall isolate the finite subcovering aX(t)c(LJ V,(ri) with respect 
to l.$i Q k} from the covering of the compactum 8X(t) by means of the sets V,(Z), 2=8X(t), and 
shall assume co= {miooO(sJ with respect to Igi< k). Then I? (8X (t), aX (L + a)) < 2a for IZ IO, o,,). 
Hence the statement of the theorem follows by virtue of the arbitrariness of a>O. 

The continuity of X (t) simplifies the verification of the right-continuity of the bound 

ax (t). 
Corollary 5.1. The bound 3X (t) is right-continuous at the instant tE [t,,!f),i.e. 

a (ax (t), f?X (t + u)) --f 0 as a-+0+ when, and only when, @(ax (t i- a), dX (t))+O as u-t0 f. 

Theorem 5.2. The bound of the set of reachability 3A ~,t~,X(t*}) is right-continuous 
in the set it,, co). 

Proof. The set of reachability A (t)= A (t,&,,X(Q) is continuous in If,,, o) according to 
Theorem 2.1. Then by virtue of Corollary 5.1 it is sufficient to prove that 

@ (aA (t' + u), t3A (t')) --t 0 as (J - 0 +, t' E Ito, o) (5.1) 

According to Corollary 4.5 and the definition,of A (a), the solution Z~ (t) E aA (t), t’ < d < t’ i_ 
m of the inclusion (2.1) will be obtained for any point 4 E aA @'-j-o), such that xe (f' + 0) = 

. It follows from the continuity of A (t) and G (t, z) that 11 s0 (t' -t (I) - Z~ (t'f 1 - 0 as 
ziiformly with respect to z,~aA (t+u), which gives (5.1). 

o-+0+ 

Theorem 5.3. The following two conditions are equivalent: 
(i) the bound 8X(t) is right-continuous at the instant t'E I&T), 
(ii) 6 > 0 will be obtained with respect to E >O, such that 

X (t’) \ V, (8X (t’)) C X (t’ + a) for s E IO, 8) v-4 

Proof. (i) =+ (ii). Assuming the opposite, we obtain oi-o+, zi-'x, E Int x (F), xi ez x (f + a& i + 
co. Zi' E X (t' + (ri), 3i' -7 Z_ will be obtained with respect to the continuity of X(t). Then ~"4 
zoI Z~"E aX(t'+oi) will be obtained. By virtue of (i) t_ EZ c9X (t'), which contradicts the inclusion 
2_ E 1nt x (F). 

(ii) =+ (i). We shall assume the opposite. Then ek -.O+, k-m and E>O will be obtained 
by virtue of Corollary 5.1, such that f3 (ax (t'+ oa), ax (t'))> 3~. We can choose 2i E ax (t'+ o&j. zi - 
s, E x (0, such that V,(tf)n aX(t')= 0. We shall obtain VzB (2,) n ax (t')= 0. Hence X, E Int X (t') 
and, according to (ii), V,(z,f c X (t' + Ui) when o+ EIO,~), which contradicts the convergence oi - 
O+, Zi+ z,,zi E ax (t' + ui), 14 co. 

6. Properties of the mapping of the linear approximation a-+X,(t). 
Theorem 6.1. suppose V E K (R”), Int V # 0. Then u0 =a0 (t)>O will be obtained, such 

that the set X,sf {U fz -I- oG(t,x)l with respect to x EX} is open for any open set XCV 
and u E 10, (T,,). 

Proof. L)O is obtained, such that 

a (G (t, z'), G (t, 5")) 4 L 1 Z' - Z" 11 when z', z" E V 

We will assume (J~J = 0,5 L-l. We shall formulate zl= su+ogO, z~EX, qo~G(t,&. It is sufficient 
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to show that for o~[O,u$ and small [z--z*II the equation s=s'+ uq is solvable with respect 
to q’ E G (t, z’), z’ cs X. Suppose xi+ qi+ are already defined. We assume zt"= z- vqi+ and subject 
the choice qiE G(t, a{) to the condition: II qi - qi_l II $1 q - qi_l II when q = G U, xi). Then II =i - zi_l II < 

u // qi+ - qi+ (I< UL [ z~_.~ - .ti3/I . Hence Y - =', qi -t g' E G (t, 5') as f -.. by, x = d $ uq’ and II 2) - =*a< (i - 
~L)-*~z-x,[(~~z-z.[. This inequality and the openness of X imply the inclusion z'mX for 
small l\z-r.1. 

Corollary 6.1. Suppose V E K (I?%), Int V # 0. Th en u. =a,(t)> 0 will be obtained, such 
that the inclusions z~ X C V, qE G&,x), x + crq f @X,(t), u E [O,(J@) imply the inclusion x~ 
ax. 

In the same way as Theorem 5.2 was obtained from Corollaries 4.5 and 5.1, from Corollaries 
5.1 and 6.1 we obtain the characteristic form of the bound 8X,,. 

Theorem 6.2. Suppose X EK(R”). Then the bound dX, is right-continuous with respect 
to (I when a = 0. 

7. The fundamental localization theorem. Theorem 7.1. FOK (2.4) to hold, it is 
necessary and sufficient that the following conditions hold: 

(i) the bound aX (t) is right-continuous in the set tE it,, T); 
(ii) the following relation holds: 

X,(t)&X((t+s)whensE:8X(t), t,<t<T (7.1) 

Proof. The necessity of conditions (i) and (u) follows from Corollary 3.1 and Theorem 
5.2. Conversely, suppose conditions (i) and (ff) hold. By virtue of (i) and Theorems 5.3 
and 6.2, Eq.13.7) holds when zEIntX(:). Hence we obtain the statement of the theorem, 
together with condition (ii) and by virtue of Corollary 3.1. 

The rest of this paper will interpret this theorem , using the continuous differentiability 
of the bound of the reachable set. 

8. Relation at a point of a continuously differentiable bound. In accordance 
with the natural representations, we will say that, in the neighbourhood of the point z'E 
c3X (t’), t’ E Ito, I”) the bound 6’X (t) is an (n - I)-dimensional Cl-surface which is continuously 
time-differentiable, if the bound H(t) can be represented using the followng diffeomorphism 
in the neighbourhood of I' for t close to t’; 

cp (t, 4 = ZJ + ml t . . . i- 2n-len-l + p (5, 2) e,, (8.1) 
z E R”-I, P(C, O)=O 

i.e. (8.1) serves as the diffecmorphism 8X(t) in the neighbourhood I' to some neighbourhood 
of the origin of coordinates z e RR-‘. We assume the function ~(t,z) is continuously 
differentiable; et,1 <i < n are unit mutually orthogonal vectors, whilst ei, l<i<n--l 
serve as tangents to, and e, is a normal to, aX(t’) in x'. Hence it follows that the vectors 
cpz, = 8cp (t’,O)/&, are tangents to 8X (t’) in r',whence by virtue of (8.1) we obtain 

pzi = 0 when 1 < i < n - 1, t = t’, z = 0 (8.2) 

If in addition Ve (r') fi Int X (t’) + @ when E > 0, then in the neighbourhood x' on one 
side of 8X (t’) the interior IntX(t') is arranged , and on the other - the addition R” \ X (t’), 
whilst by virtue of the continuity of X(E)this property is also preserved for t close to t'. 
In this case we will say that aX(t’) separates IntX(t') and R”\X (t')in the neighbourhood 
of x'. 

We shall write X (o)EA(t‘,x’), if the conditions described above hold. Unless stated 
otherwise, we will assume that the normal a,, is external. 

We shall fix qo E G (t’, z’h which satisfies the inequality 

<% eJ < <gal e,J when 4 E G (I’, d) (3.3) 
Lemma 8.1. Suppose X (*) E A (t’, cc’). Then 

IX (t’) + OG (t’, x’) h X 0’) + ml0 

IX, (t’) z x (t’) + UG (t’, 5’) 

Proof. We have X (t'} + oqO c. X (t') + uG ft', z'). We shall indirectly prove #at e>O and 
ao>O will be obtained with respect to y>O, satisfying the inclusion 

V, (4 n [x (t') + aG (t', ~')l c V,, (x (0 + oqo) when O< d coo 

whence follows the first statement of the lemma. We will assume that the sequence Ui~O-t, 

Ei+O+* 2i = 52’ + triqi’, 123 - & i ( t+, Y’ E X (t’), qi’ E G (t’, z’), Z$ --+ 5’3 qi’ -+ q E G (t’. 4s 
is obtained. Then for some t, we have 

~3 S Vatll (X ft’) I- %Q 

'i'+ 'i (rl - qo) & V,iN,z (X (0) when i >, h 
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which contradicts the continuous differentiability of ax(~). The second statement of the lemma 
follows from the continuity of G(t,r). 

From Theorem 3.1 and Lemma 8.1 we have 

Theorem 8.1. Suppose X (*f E fk(t', z'). Then X0 (t') z X (t’) -i- aq,. From the definitions and 
continuous differentiability of 8X(t) there follows 

Theorem 8.2. Suppose X (9) E A (t’, x’). Then 

X@' + u)Z X(C) f up* @', O)e,; p[ (2', O)= Gp(t‘, O)/& 

Note that the relation 

X' 
X (if) f Up0 N X (t’) f Opt (it’, 0) e, when X (-) E A (t’, d) 

holds when, and only when, 
pt 0’7 0) = <no, en> (8.4) 

which, bearing in mind (8.31, we shall rewrite in the form 

~8 (s', 0) = max (9, e,J with respect to q E G(t’,.z’) (8.5) 
Then from Theorems 3.1, 8.1 and 8.2 we obtain a basic localized statement for the 

continuously differentiable bound dX (t). 
Theorem 8.3. Suppose X (s) E A (t’, x’). Then the following conditions areequivalent: 

(ii X, (0 4 x (t' -+- CT), (ii) condition (8.5) holds. 
By virtue of Theorem 7.1 the fundamental relation fB.ff indicates that the rate of 

displacement pf (t’, 0) of the bound &4 (t) of the set of reachability A (t) at the point 
x' CGA (t’) in the direction of the unit external normal e,, equals the maximum projections 
on to e, of permissible velocities g at this point. 

9. The equation in state space. We shall consider the continuous function B(t,xf: 
RW1+ R and shall formulate X (t) = (x E R”: B (t, x) < 0). Unless stated otherwise, as before 
we will assume that as definite X (t) is a continuous mapping [to, T)+ K (R”), 2’~ [to, a). 

Suppose the point (t',r') satisfies the equation B (t’,x’)= 0 and the function B(t,x) is 
continuously differentiable in the neighbourhood of (t',s'), whilst grad B (t’, x’) ZEZ co1 (B,,, . . ., 

B,,) # 0. For fixed t'we shall denote by aXB(t') the set I', such that (f',x') satisfies the 
conditions formulated above. It is clear that axB (t*)cax (t') and the inclusion x'EaXB(t') 
implies the inclusion X(.)E A(t',x'). According to (8.11, we can write 

B (t’ + (I, x’ + e,, p (t' + u, 0)) = 0, B (t’, 2’) = 0 

Differentiating with respect to CJ and substituting (8.4) here, we obtain 

Bt (t', 5') + (grad B (t’, 4, e&q,, e,> = 0 

By virtue of the parallelism of e,, and grad B(t’,x’) this gives 

Bt (t', x') + <grad B (t’, x’), q,,> = 0 

Bearing in mind the definition of q. (8.3) and omitting the primes, here we finally 
obtain that when xE 0X* (t) the equation 

&(k 2) +ge~~x,<gradR(t, x), q)=O (W 

is equivalent to Eq.Ca.5). Then from Theorems 7.1, 8.3 and the inclusion X(-)E A(t,x) when 
x E aX* (t) we have 

Theorem 9.1. For (2.4) to hold it is necessary and sufficient that the following 
conditions hold: 

(i) the bound ax(t) is right-continuous in the set t E it,, Z’), 

(ii) X0 g X (t i- u) when 5 e aX (t) \ aXB (t), t E It,, T), 

(iii) when xEaXs(t), tE k,,T) condition (9.1) holds. 

Remarks. 9.1. Since the inclusion a~ aXB(f) using the definition aXs(t) implies the 
equation B(t,z)= 0, Eq.Cg.1) is not considered outside the set of points (t,z), satisfying 
the equation B(t,z)= 0. 

9.2. In the notation of system (1.2) the equation in the space of the states (Eq.lg.1)) 
will be rewritten in the form 

B1+uz;(gradB, f)=O; B=B(t, z), f=f(f,s, U) (9.2) 
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Let us consider the system z'= ~(I,u), f(O,O)= O,OE U, UE U and denote the minimum time 
necessary to reach point z from the origin of coordinates by 0(z), i.e. 9(z) is a Bellman 
function in the problem of transferring the system z'= -f(z,u) to the origin of coordinates 
in the minimum time. Assuming B (t, Z) = 8 (2) - t, we obtain a Bellman equation from (9.2) for 
the problem of the limit speed of response 

i.e. Bellman's equation serves as a special case of Eq.tg.2). 

10. The equation in conjugate space. This equation was first obtained for convex 
sets of reachability /13, 14/, and its heuristic derivation was given in /15/ for non-convex 
sets of reachability. Here we need a generalization of the idea of a support function to 
non-convex sets /15, 16/. Suppose X(e)= h(t’,s’). For XE ax(t) we shall denote the external 
normal to 3X(t) in z by s(t,z)# 0. Consider some open neighbourhoods X, v(x), V” (d) for 
t', x', s' = s (t', 5') respectively. For t Ex, sEv(s’) we shall use x(t,s)C v(.r') to denote the 
set of points (possibly empty) zE ax (t) n r(z'), in which s serves as an external normal to 
ax (t) in x. We shall use the formula 

r(tt s)= <z(t, S), s> =rExg a) (x, s) when t E x, s E V’(s)) (10.1) 

to define the supporting mapping (possibly multivalued) in the neighbourhood x X p(x') X P(s') 
of the point (t',x',s') with values in R. The asterisk indicates transposition. 

Theorem 10.1. Suppose X (a) E A (t’, 2’); the function p&z) 'in the representation (8.1) 
is doubly continuously differentiable, whilst the matrix of the two partial derivatives is 
non-degenerate with respect to z 

det ~,r* 0'. 0) # 0 (10.2) 

Then the open neighbourhoods x, V”(d) and V”(s’) will be obtained for t',x' and s', such 
that Eq.(lO.l) defines a single-valued continuously differentiable support mapping with values 
in R, in the neighbourhood x X p(z') X V”(s’) whilst 

x (t, s) = r,* (t, s) E V” (5’) whent E x, s E v" (s') (10.3) 

Q (t’, so = Pf (f, 0) II s’ II (10.4) 

Proof. The vectors (pri(',z) are tangential to ax(t) at the point ~($,a). Therefore the 
condition of orthogonality of s to ax(t) in q(t,r) will be written as 

<'pZC (G 1)s 8) =Owheni<iGn-1 (10.5) 

According to (8.1), this condo Ion will be written in the form ,i. 

(~,,a)p*i(t,z)+<~i,8)=0, Ididn-l (10.6) 

By virtue of (8.2) the vector r=O serves as a solution of (10.6) when r=s',t= t'. A 
unique continuously differentiable function Z&S), serving as the solution of (10.6), will be 
obtained using the theorem on the implicit function by virtue of condition (10.2) for t,s, 
close to t’, 8’. Hence the support mapping will be written in the form r(t,~(t,s), s)= <rp(t,a(t,s)),s>. 
Differentiating it and bearing in mind that, according to (10.5), q** J= 0, ('P&r 8) = (.r, (pr 8) = 0, 
we obtain Eq.(l0.3) for I(~,s)= q(t,~)= v(t,~(t,s)). Since the vectors c,and s' differ only by 
a positive multiplier,<ei,a') = 0 when 1 Gie n- 1, and from (8.1) we obtain r (t, I') = (Z', s'> + p (t, 
2 (t, 8')) IIJ II . Hence and from (8.2) we obtain (10.4). 

Bearing in mind (10.41, we shall write Eq.(8.4) in the form rt = <qO, e,> IIs' II = <a, s’>. 
Bearing in mind (8.3) and (10.3) and omitting the primes, we shall rewrite it in the form 

q&s)= max(q,s> with respect to q E G 0, r** (L s)) (10.7) 

We shall denote by aX'(t') the set of points x'E aX(t'), such that X (*)E A (t’, x’), whilst 
the function p(t,z) is doubly continuously differentiable and satisfies (10.2). Consider 
a single-valued support mapping r(t,s), which is defined by Eq.(lO.l) in some neighbourhood 
x X v" (x') X V” (s’) of the point (t’, x’, s’), s’ # 0 and which satisfies the conclusion of Theorem 
10.1. We shall denote the family of all such single-valued supporting mappings by {r(t,s)). 
Then from Theorems 7.1, 8.3 and 10.1 we have 

Theorem 10.2. For Eq.(2.4) to hold, it is necessary and sufficient that the following 
conditions hold: 

(i) the bound ax (t) is right-continuous in the set t E [to, T), 

(ii) x, % x (t + u) when 5 E ax (t) \ axr (1). t E [to, T), 

(iii) the supporting mappings {r&s)}, tE [to, T) satisfy Eq.cl0.7). 

Remark 10.1. For system (1.2) Eq.(10.7) will be rewritten in the form /13-16/: r: = max 

<f (t, r,*, u),s> with respect to UE U. Since the variable s is conjugate to X with respect to 



the scalar product (L,s>, Eq.cl0.7) is called an equation in conjugate space. 

11. Equations in parametric form. We assume that X (.)E R(f',x').Here it is 
convenient to write the diffeomorphism which specifies ax (G in the neighbourhood of the 
point z'E 8X(f) for t close tot 'inthemore common form: I == p (t, U), u cz R’L-‘, p (t, I’) Es C’, s’ 
p (t’, o’), whilst p (t, u) when t =-: const, near to t', is adiffeomorphismofsomeneighbourhood of the 
point u'E En-l to ax(t) intheneiqhbourhood 2'. Thediffeomornhism 18.1) is a specialcase of 
p(t,u). On the o~lerhand, thedif~eomor~hism Z+U(Z) willbeobtained, reducing p(t,v) tothe form 
(8.1) : p (t, u(z)) = 2’ -+ zlel +. . . i- z,-1%-1 -k p (t, Z) e,,.Ilence (8.4) will be rewritten in the form Gt (t', 
V'),e,,> = (q~,e,>, whichinturn canbe written in the form of the inclusion 

~1 (t', u') E Y (t, P (t', 0, e,) (l1.l) 

y (t, 5, S)z {q G R": <q, s} = max <$,.s} with respect to q' E G (t, z)} 

Havingthematrixofpartialderivatives p,,(t,v), we canuse somemethodtoexpresstheexternal 
normal s (t,P(t,u)) to ax (t) at the point P(t,v)by p,,(t,u) using some continuous function h: s (t, 
p(t,u)) = h(p,(t,u))fO. Thenomittingtheprimes,werewrite (11.1) in the form of a differential 
inclusion in partial derivatives 

Pt E y" (G P9 h (p,)); p = P 6, v) (11.2) 

Weshalldenoteby i?X*(t)C 3X(t) the set XE 8X(t), such that X(a)= h(t,z). We shall take 

some family {p(t,u)}, to< t< T, consistinqofthe abovelocallydefinite diffeomorphisms P (tl 4% 
suchthatanydiffeomorphisms?ecifies ax(t) in the domainof its definition and anypoint SE dXA (t), 
tE ito, T) b~ilongstothedomainofvaluesofatleastoneofthediffeomorphisms p(t,~). 
Then fromTheorems 7.1and 8.3 we have 

Theorem11.1. ForEq.(2.4) toholditisnecessaryandsufficientthatthe followingconditions 
hold: 

(i) the bound 3X(t) is right-continuous in the set tfS it@, T), 
(ii) X, & X (t + 1s) when I E 8X (t) \ aXn (t), t E ito, T), 

(iii) themappings p(t,v) of the family {p(t,u)} satisfy (11.2). 
We shall put Q (t, X. S) = Y (t, x, s)nG (t, ) x and consider the set 3x9 (t)Cb’XA(t) ofpointsin 

which q(t,~ (t, Y), h (p+,(t, u))) consists of a unique vector. Then the system 

PI = 11, (6 P? h (P,)), P = P (G v) (11.3) 

will be a special case of (11.2). Therefore from Theorems 7.1 and 11.1 we will obtain 

Corollary 11.1. For Eq.(2.4) to hold it is sufficient that the following conditions hold: 
(i) the bound 3X (I) is right-continuous in the set t GZ [to, T), 

(ii) X, 5 X (t -f- 0) when I E 6'X (t) \ &‘XQ (t)% t E Ito, T), 

(iii) the mappings p(t,~) of the family {p(t,u)} satisfy the partial differential Eqs.cl1.3) 
when p (t, 11) G? aXQ (t). 

Note that Eqs.ill.3) for (1.2) can be rewritten in the form 

P# = f (t, P, u (6 P? P")) (11.4) 

where u(t, p,,pv) is obtained from condition (8.5) : 

Cr (t, pa ~4 (t, P, P,)), h (PJ> = "2; <f (t, pt 4, h (pm)> 
I 

It is obvious from (11.4) that p (t)= p(t, V) is a limit trajectory when v = Congt. 

12. Description of the dynamics of the set of reachability using boundary 
solutions. Considering a section at the instant tE [to, T) of the family (z(t)},to < t< T 
of all boundary solutions with the initial set X(&J, we will obtain the bound of the set of 
reachability &i (t, to, X (to)), which is characterised by the set of reachability d (t) = A (t,to, 

X k4 itself. Therefore it is possible to describe the dynamics of the set of reachability 
using boundary solutions. 

We shall obtain the necessary conditions of boundedness of the solutions. For A (*) E 
n(t,x) we shall denote by s(t,x) the external normal to &i(t) at the point x6ZZ a.4 (t), which 
continuously depends on t,x. Then Theorems 7.1 and 8.3, which are definitions of the 
boundary solution and differentiability , give the following result. 

Theorem 12 .I.. suppose 5 (t), to< t< T is a boundary solution from the initial set 
X (t,); t’ ~(t,, 2’); A (.)E A (t’, 5 (t’)). Then e > 0 will be obtained, such that for all tE (t' - s, 
1' -t-s), for which the derivative r*(t) exists, the following condition holds: 

(z' (t), s (t, x (t))} = max<p, s (t, z (t))> with respect to 4 E G (t, z (t)) (12.1) 

Below we assume that U is a compactum and the function f(t,s,u) in (1.2) is continuous 
together with the matrix f,(t,x,u) of its partial derivatives. This ensures that the above 
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assumptions with respect to (2.1) hold. We shall denote by h(t,s) the arbitrary scalar 
function which is measurable when s = const, continuous when t = con&, and for which the 
summed function b, (t) > 1 h(t,s) 1, tE [a,bl,s~X will be obtained for any X E K(R”) and 
la, bl c ho, T) . We shall denote the n X n-dimensional unit matrix by I. The following 
theorem shows that the evolution oftheexternal normal s(t) = s(t,x(t)) can be described using 
the conjugate system of Pontryagin's maximum principle. 

Theorem 12.2. (The maximum principle). Suppose s(t), to< t< 2” is a boundary solution 
of (2.1) from the initial set X(t,), which satisfies (1.2) with some measurable control 

u" (t) E u; t’ E (to, T); A (a) E A (t’, s(t’));s’#O is the external normal to 13_4 (t) at the point 
z (t’) E 6’A (t’). Then e>O will be obtained, such that the condition 

<f (t, 2 (t), 2 (t)), S(t)> = max (f (t, I (t), u), S (t)> with respect to u E U (12.2) 

where s(t')= s', and s(t) almost everywhere in (t’- e, t’+ e) satisfies the equation 

s’ = Ih (t, s) z - fx’Is; f.* = fx* (t, 5 (t), u” (t)) (12.3) 

holds for t E (t' - e, t' + e), for which the derivative z’(t) exists. 

Proof. According to Theorem 12.1,it is sufficient to prove that the external normal 

8 V? = (0) to aA (t) in z(t) when tE(t’-qt’ +e) is specified as the solution of (12.3) with 
s (t’) = s’. Consider the solutions (1.2) z*(t) when tE[t’,t’+s) with the control Y= u"(t) and 
the initial points Z. (t’) E 8A (t’), which fill aA (t’) in the neighbourhood of z(t'). The points 

x' (t) of these solutions will describe the (n-iI)-dimensional Cl-surface r (09 which 
passes through z(t) and belongs to the set of reachability A(t). Then by virtue of the 
continuous differentiability of &4(t) in s(t) the tangential hyperplanes tan r (t) and tan aA (t) 
to r (t) and aA in z(t) coincide. Therefore, it is sufficient to obtain a description of 
the evolution of the vector s(t), which is normal to tanF(t). The generatrices ci (0 are 
generally ncn-unit, and the hyperplanes tanr(t) can be described using a system in variations 

Cj' = f&, 16 i d fi - L f, = 5, v. 2 w> It (9) 

The condition of the orthogonality of s(t) to ci (t) is written as <ci (t), s(t)) = 0. By virtue 
of the relations <ei (t’),d> = O,idtcn- i differentiation of this system gives the sufficient 
condition for its satisfaction: G&i (0, s(t)) +<ct(t), r’(t)>= 0, i.e. <‘?I (0, I' (:) + f,*s (t)> = 0, :' \< t 4 
f' + 8. This condition holds if s.(t)+f=*s(t)= As(t), where h is an arbitrary number, in particular 
k=h(t,s), which gives (12.3). 

Assuming h (t,s) = 0, we obtain a standard formulation of the maximum principle. The 
presence of h(t,s) does not introduce fundamental differences, since it only affects the 
length of the vector s(t). Specifying the different initial conditions s(tJ, which correspond 
to the external normals to aX(t,) and s(to)~aX(t,), and integrating (1.2), (12.3) in [t,,T) 
with the control obtained using (12.2), we can construct a family of boundary solutions. The 
exponential increase in II s (1) II as t increases, which complicates the numerical calculations, 
is inherent in atitomatic control systems. Therefore the choice of h(t,s) can be subject to 
the additional condition Ils(t)(( = con&, i.e. <s'(t), s(t)) =O, whence we will obtain h = <fx*S, s> 
(s, s>-‘. Substitution into (12.3) gives the normalized conjugate system 

s' = [(f+% s> II s Ir21 - f,*l s (12.4) 

13. The optimal equation. We will say that z(t), to< t< T,x(t,) E X (to) is an 
optimal trajectory - with respect to speed of response - from the initial set X(t,) if the 
trajectory I+ (t), t, < t < t, < T, does not exist, such that I* (to) E X (t,,), z (tJ = z (2’). From 
Corollary 4.4 we obtain the characteristic form of these trajectories. 

Theorem 13.1. Suppose x(t), to< t< T is an optimal trajectory - with respect to speed 
of response - from the initial set X(t,). It is then a limit trajectory from the initial set 

X (&I). 
For the optimal control problem in its Lagrangian form the finite point of the optimal 

trajectory belongs to the bound of the set of reachability in an extended space /14/. Then, 
according to Corollary 4.5, the optimal trajectory is a limit trajectory. The above enables 
us to reduce the finding of optimal trajectories to obtaining limit trajectories. 

14. The classification of equations of the set of reachability. We shall 
list the most common methods of representing sets: the pointwise representation, under which 
the set is characterized by the set of points of which it consists, without reduction to a 
description using the other characteristics; representation using an inequality; representation 
using a support function or a support mapping; representation by means of the parametric 
specification of the bound of the set. 

Descriptions of the dynamics of the set of reachability using an integral funnel equation 
and partial differential equations in the space of states which is also conjugate to the space 
in parametric form, correspond to these forms. Partial differential equations were obtained 
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using the notation of the basic relation (8.5) in terms of the chosen description of the 
surface &4(t). Using other forms of describing aA and writing (8.5) in terms of them, we 
can also obtain other forms of partial differential equations of the dynamics of a set of 
reachability. 

15. Comments. Bellman's generalized equation was obtained previously using the 
extension principle*, and was obtained in /17, 15/ by considering the bound of the integral 
funnel /19/. The use of localization of the integral funnel equation enabled us to construct 
a mathematical theory of Bellman's generalized equation with an indication of the necessary 
and sufficient conditions for Eq.(2.4) to hold. Bellman's equation for differential games 
was analysed in /3/. The function B(t,r) in (9.2) can be defined irrespective of any 
connection with the optimal value of the criterion of quality, which is the fundamental 
difference between Eq.tg.2) and the usual Bellman equation. 

A description of the bound of the set of reachability is considered in /19/ using 
trajectories that satisfy Pontryagin's maximum principle. R-solutions are useful to average 
the differential inclusions /20/. Corollary 4.5 reflects the integral funnel property found 
by Hukuhara (see /21, p.30/). The method of local relations which describethedynamics of 
stable sets in a differential game was proposed in /22/. The generalization of the integral 
funnel equation to arbitrary locally compact metric spaces was considered in /23/. The 
simplest examples of the application of the above partial differential equations to 
calculating sets of reachability were discussed in /24/. 

The author thanks J.L. Lions for his support and interest. 

REFERENCES 

1. KRASOVSKII N.N., Game problems on the meeting of motions. Moscow, Nauka, 1970. 
2. KURZHANSKII A.B., Control and supervision under conditions of uncertainty. Moscow, Nauka, 

1977. 
3. SUBBOTIN A.I. and CHENTSOV A-G., Optimizing the guarnatee in control problems. Moscow, 

Nauka, 1981. 
4. OVSEEVICH A.I. and CHERNOUS'KO F.L., Bilateral estimates of the domains of reachability 

of controllable systems. PMM, 46, 5, 1982. 
5. ATHANS M., KU R. and GERSHWIN S.B., The uncertainity threshold principle. IEEE Trans. 

Automat. Control, AC-22, 3, 1977. 
6. BORISEVICH YU.G., GEL'MAN B.D., MYSHKIS A.D. and OEUKHOVSKII V.V., Multiple-valued mappings. 

In: Results in science and technology. Mathematical analysis. Moscow, VINITI, 19, 1982. 
7. GAMKRELIDZE R.V., Slipping optimal modes. Dokl. AN SSSR, 143, 6, 1962. 
8. PANASYUK A.I. and PANASYUK V.I., Asymptotic optimization of non-linear control systems. 

Minsk, Izd-vo Belorus. un-ta, 1977. 
9. PANASYUK A-1. and P~ASYUK V.I., An equation produced using a differential inclusion. Mat. 

Zametki, 27, 3, 1980. 
10. TOLSTONOGOV A.A., The integral funnel equation of a differential inclusion. I4at. Zametki, 

32, 6, 1982. 
11. TOLSTONOGOV A.A., The problems of solutions of the integral funnel equation of a 

differential inclusion. Differents. Uravneniya, 20, 2, 1984. 
12. TOLS~N~V A.A., The integral funnel equation of a differential inclusion in Banach space 

and the properties of its solutions. Dokl. AN SSSR, 276, 5, 1984. 
13. PANASYUK A.I., REachability set differential equation and optimal control problem. - Math. 

Optimierung. Theorie und Anwendungen. Wartburg/Eisenach, DDR, 1981. 
14. PANASYUK A.I., Equations of the domains of reachability and their use in optimal control 

problems. Avtomatika i Telemekhanika, 5, 1982. 
15. PANASYUK A.I., Equation of sets of reachability. Sib. Mat. Zh., 25, 4, 1984. 
16. PANASYUK A.I., A differential equation of non-convex sets of reqchability. Mat. Zametki, 

37, 5, 1985. 
17. BUTKOVSKII A.G., A differential-geometry method of structurally solving problems Of 

controllability and finite control. Avtomatika i Telemekhanika, 1, 1982. 
18. LEITMANN G., Otpimality and reachability with feedback control. In: Dynamica Systems and 

Microphysics. N.Y. L: Acad. Press, 1982. 
19. BLAGODATSKIKH V.I. and FILIPPOV A.F., Differential inclusions and optimal control. Tr. Mat. 

in. AN SSSR im. V.A. Steklov, 169, 1985. 

* Gurman V.I. and Konstantinov G.N. Sets of reachability of controllable systems. The 
connection with Bellman's equation. Irkutsk, 1981, 14~. Dep. VINITI, 14.08.81; N0.4038-81. 



415 

20. 
21. 
22. 

23. 

24. 

PLOTNIKOV V.A., Averaging differential inclusions. Ukr. Mat. Zh., 31, 5, 1979. 
HABTMAN F., Ordinary differential equations. Moscow, Mir, 1970. 

GUSEINOV G.KH., SUBBOTIN A.I. and USHAKOV V.N., Derivatives of multiple-valued mappings 
and their application in game problems of control. Probl. Control Inform. Theory, 14, 
3, 1985. 

PANASYUK A.I., Quasidifferential equations in metric space. Differents. Uravneniya, 21, 
8, 1985. 

PANASYUK A.I. and PANASYUK V.I., Asymptotic main-line optimization of controllable systems. 
Minsk: Nauka i Tekhnika. 1986. 

Translated by H.Z. 

P1ff.J U.S.S.R.,vol.50,No.4,pp.415-420,1986 oo21-8928/86 $lO.OO+O.OO 
Printed in Great Britain 01987 Pergamon Journals Ltd. 

OPTIMAL ESTIMATES OF THE COORDINATES OF SYSTEMS 
WITH A TIME LAG WITH RESPECT TO A SET OF CONTINUOUS AND 

DISCRETE OBSERVATIONS* 

V.B. KOLMANOVSKII and A.V. FROLOV 

Expressions for optimal estimates of coordinates of systems with a time 
lag when there are continuous and discrete measurements are established 
and investigated. The effect of the amount of lag on the quality of 
estimation is demonstrated as an example. The related problems of when 
there are only continuous measurements were considered previously /l, 2/. 

1. Formulation of the problem. Consider a dynamic system whose motion in the segment 
IO, Tl is described by a stochastic equation with initial conditions 

r' 0) = A (t) s (t -h,) + 01 (t) El' (t), 8 < t < T (1.1) 

x (s) = 0, s< 0; x (0) = 50 (1.2) 

For system (1.1) we carry out the following continuous Y 0) and discrete yi observations 
at specified instants of time ti 

Y w = g 0) x 0 - h) + (Jz (4 Ez’ (4, 0 < t < T 0.3) 

yi = fiix (tJ + ri&r 0 < ti < T, i=l, . . ., N; tl < t, < . . .< TV (1.4) 

In Eqs.(l.l)-(1.4) the phase vector xE& (where R, is an n-dimensional Euclidean 
space); the matrices A,al,g,a, with piecewise-continuous elements and thematrices pi and ri 
are specified; the time-lag constants h,,h>O; the Gaussian random quantities with zero 
expectation and unit covariation matrix are denoted by ci, and 5, and Ea are standard Wiener 
processes; the Gaussian random quantity x0 is such that Mx,, =O, Do=Mx~zo’. Here M is the 
sign of expectation, the prime is the sign of transposition, and D, is a specified positive- 
definite matrix. The random quantities &,&,x0, I;i are mutually independent. Finally, 
without loss of generality, it is assumed that y E R,, yi ER,. 

Note that consideration of the time lag in the channel of measurements (1.3) is caused 
by the finiteness of time necessary to carry out the observations and to work out their results. 

The need to consider the time lag in a measurement channel has been noted repeatedly in 
applied work (e.g. /3/j. The choice of the initial conditions in the form (1.2) indicates 

thatthemotionofthesystemisonlydescribedbyEqs.(l.l) for t>O. andnothingisknownregarding 
the system when t<O. In accordance with this, the continuous observations (1.3) that can 
be produced in the segment of time [O,h] cannot carry any data about the system either, which 
was reflected in the above assumptions. 

The problem consists of constructing an estimate m(T) - which is optimal in the mean- 
square sense - of the vector x(T), using the results of the observations (1.31, (1.4) in the 
segment IO, TI. It is known that m(T) is the conditional expectation x(T) under the conditions 

*Prikl.Matem.Mekhn.,50,4,544-550,1986 


