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EQUATIONS OF THE DYNAMICS OF SETS OF REACHABILITY
IN PROBLEMS OF OPTIMIZATION AND CONTROL
UNDER CONDITIONS OF UNCERTAINTY®

A.I. PANASYUK

An integral funnel equation is used to interpret the problem of control
under conditions of uncertainty in terms of the dynamics of sets.
Localization of this equation is obtained. The right-continuity of the
bound of the set of reachability is proved, on the basis of which the
dynamics of the set of reachability is reduced to an analysis of the

local integral funnel equation at peoints of the bound of the sets of
reachability. The local integral funnel equation reduces to a differential
relation at the points of continuous differentiability of this bound,

from which partial differential eguations of the dynamics of the sets of
reachability in the space of the positions, in the conjugate space and in
the parametric form of the notation are obtained. A classification of
these equations is given in accordance with the forms of representation

of the sets and surfaces in Euclidean space. Bellman's well-known equation
serves as a gpecial case of the eguation in the space of positions. A
derivation of the maximum principle with a normalized conjugate system

is presented for the boundary solutions. Its normalization eliminates

the increase in the norm of the vector of conjugate variables and increases
the time for the numerical calculations. The optimal control problem
reduces to one of obtaining boundary solutions. A considerable number of
papers (/1-5/, etc.) cover control under conditions of uncertainty.

1. Control under conditions of uncertainty as a problem of the dynamics of
sets. we consider the control system (the dot denotes differentiation with respect to time)

T=f(t, v u), TR, Hh<t<T, uSUCR" (1.1)

Here v is the control vector, and u =u (f) is the vector of perturbing influences, whose
exact values a a priori unknown, but the bounds of whose possible values, specified by the
set U, are known. The law of control is usually specified when designing a system in the form
of a program = v {t) or regulator v = v (l,z). Then the family ¥ of trajectories z (1), o <<
t << T, corresponding to the different laws of variation of the indeterminate guantities
u{)e= U, t, <t T, correspond to each initial value z, of system (1.1). We can characterize
the family W obtained by its section, which consists of the possible values of the vectors
of the positions of the system at the instant t

D (1) =D (t, ty, 7o) = {x (1): c(-) = W}

The set D () reflects the indeterminate form of the vector of the positions of the
system, caused by the uncertainty of the law of variation u (f}. Knowing the evolution of D (g},
we can estimate the dynamic uncertainty of the state of the system, which is an important
component of the analysis and synthesis of the system under conditions of uncertainty. In
particular, if we specify the bounds D, (t) of permissible deviations of the state of the
system from the prescribed law of their variation, caused by the perturbations u (t), which is
written in the form of the inclusion D (t) C D, (t), the synthesis of the regulator v (t,2) is
subject to the additional condition that this inclusion holds. Putting f(, z,u) =f, (¢, z, v (t,
z), u), we rewrite (1.1} in the form

F=f{tzu, esU, ,<tLT (1.2)
Then u will be the vector of controls, and D (¢, 23, 2,) will be the set of reachability
of system (1.2).

2. The integral funnel equation. we shall put G (¢ z) = convf(t, z, U) , a convex
envelope of the set f (i z, U) of permissible velocities of system (1.2) and shall consider

the differential inclusion .
z e 6t z), ze BT {2.1)
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We shall denote /6/ by K (R" the metric space of the compacta from R" with the Hausdorff
metric
o (X, Xp) = max {f (X, X)), B(X, Xy}, X, X, =K (RY
B (X1, Xo) =maxd(z, Xs); d(z, X3)=minjjz— 2|
xe X, x'es Xy

all =<z, 2%, Cz,2") = na" + ...+ 2.2

and shall denote by Kv{A") its subspace, which consists of convex compacta. Unless otherwise
stated, we will further assume that G (t,z) is a continuous mapping R"? — Kv (R"), which
satisfies Lipschitz's local condition with respect to z, i.e. for any (t,2) <= R*! ¢ >0 and

L >0 will be obtained, such that a (G (t',a),G (', 2) < L|lz’ —2"|] when Jlz—2'(<ellz—
2l <&, |t — 1t |<<e wWe shall call the absolutely continuous function =z (f), ¢, <t <{ 7T, which
satisfies (2.1) almost everywhere in [f;, 7], its solution or trajectory.

The set of right-hand ends «(I) of all possible solutions of (2.1} z(f), t, <t << T with
the initial condition x (t,) &=A, is called a set of reachability 4 (T, %, 4,) with the initial
set A, C R EBelow, unless otherwise stated, by the solution we mean the solution of (2.1).
Sets of reachability are an important characteristic of a controllable system and in aggregate
are essentially another equivalent description of it. It is well-known /7/ that taking the
convex envelope conv f(t,z, U) of a set of permissible velocities of system (1.2) gives the
closure clD (t, ty, z,) of its sets of reachability, i.e. elD (¢, {,, z,) = A (t, tp, Ty). This enables
us to reduce the analysis of D {t, t,, 2,) to an examination of 4 (¢, t,, z,).

An eguation of the dynamics of the sets of reachability is obtained in /8, 9/:

lim o (Ro (t) R (¢ + 0)) =0; Ro(t) = Y, [z -+ 96 ¢, 2)] (2.2)

and is called an integral funnel equation in /10-12/. Suppose X (f;) & K {(R™). The continuous

mapping R{f) = R (t, 14 X (to)): ltn to -+ )= K (B™), n >0, R{t) = X (t,), which satisfies (2.2}

when ¢ €= [ty ¢, -+ 1), is called a solution of Eq.(2.2), or an R-solution with the initial set

X (¢0)» produced by G(t,z) /8, 9/. The ordinary differential equation in R" is a special

case of (2.2), and the theorems of existence, uniqueness and extendability of the solutions

are transposed to (2.2) /8-12/. 1In particular, the unigue R-solution R (t, 1, X {t,)), defined

in the maximum interval of the existence f, (i<l o = o (f;, X (%)) < o, exists for X (t;) = K (B").
Following /8, 9/, we will obtain the connection between the R-solutions and the sets of

reachability.

Theorem 2.1. The equation R (i, £, X (t,)) = A {I, t,, X (f,)) holds for X ({,) = K (R™) when
o < i << .
Unless otherwise stated, we shall everywhere assume that X (f} is a continuous mapping

X (-): [ty, T) > K (R (2.3)

The aim of this paper is to obtain the conditions for X () and the sets of reachability
to be identical, i.e.

X (@) = A4 (@, 2, X (ty)) when £, <<t << T (2.4)

If T >, it follows from Eq.(2.4) that the mapping (2.3) is discontinuous when ¢ = @.
Therefore Eq.{2.4) and the continuity of X () guarantee the inclusion 7T & {ty, wl, From the
previous analysis we will obtain the basic condition for (2.4).

Theorem 2.2. For Eq.(2.4) to hold, it is necessary and sufficient that the mapping (2.3)
of X () satisfies the integral funnel equation when ft,<{t<<T

limo e (Xq(t), X (¢ +0)=0; Xo()= {J [z+0G(t 2)]
L xeX

3. Localization of the integral funnel equation. The localization of the
conditions contained in the previous theorem is the basic content of this paper. For the set
X CR" we use Vgz{X), ¢ >0 to denote its closed e-neighbourhood in A" Consider some
mappings X; (+), X (-): [0, ¢') = K (R™), X & K (R™), where the set X can be single-point. If
£¢>0 and ¢, >0 is obtained for any p >0 , such that

X;(0) N Ve (2) C Vou (X5 (0)) when 0L o<y, 2 X (3.1)
X, (0) N Vi(2) C Vou (X, {6)) when 0 o<, zX (3.2)

we shall write
X1 (0) ~ X5 (0) (3.3)

We obtain the following results from the definitions.
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Theorem 3.1. The ratio o~ 1is an equivalence ratio.

Theorem 3.2. The following conditions are equivalent for the continuous mappings X, (g),
X; (0): 10, 0") — K (R"), X, (0) = X, (0) :

() Tmou(Xu(o) Xa(@)=0, () Xi(0) == Xu(a)
G-}

Theorem 3.3. The following conditions are equivalent:
(i} (3.3) holds, (ii) the following relation holds

X1 (o) ~ Xi(o) when z= X (3.4)

Proof. The implication (i) (i) is obvious. We shall prove the implication (i) = (). We
shall show that §>0 and o0,>0 will be obtained using p>0, for which the following
inclusion holds:

X (0) N Vg (@) T Vg (Xp (@) fOr 0o op, =X (3.5)

According to (3.4), e=c¢(x)>0 and oy=0e(z) >0 will be obtained using ze X, such that
X3 (0) N Vg (0) C Vg (X5 (0)) for 0 < 0 <0 (2) (3.8)
We shall choose a finite subcovering X C{U Vi using 1igk) V= VE(“ (z;), ze X from
the covering of the compactum X C{UVyg (@) using z = X}. Then ¥V, (X) C{U Vi using 1<<i<k for
some &< (0,¢). Hence by virtue of (3.6) when 0< o< 0 = min{g(ny)--., 0 (zx)} the validity of the
following inclusions follows:

XNV (XN)C U (X)) N V)TV, (Xa(o)
ik
which implies (3.5). We shall obtain the satisfaction of condition (3.1} apart from the
notation. The satisfaction of condition (3.2) is proved in a similar way.
We obtain the first localized characteristic of the set of reachability from Theorems
2.2, 3.2 and 3.3.

Corollary 3.1. For Eq.(2.4) to hold, it is necessary and sufficient that

Xo)=X(t+0) for =X (1), te<t<T (3.7
This result enables us to consider (3.7) as a local integral funnel equation at the point
». The set of reachahility has the following important property Anv of itg innery mointcs

~n1e Eel O YeacClallillly nag LOLLOWAING 1RPRXiant propeXriy. A0Y O 1TSS AnNneY poinls

belongs to the interior of the set of reachability during some time. Then Eg.(3.7) holds in
a trivial way at the inner points of the set of reachability, and it is sufficient to consider
Tow 2T 7Y Anle o+ s ey 3a M d oy 22t 1T mvimlila sy b tama wmmeedd 2l T Efowenvrnidial mswiimded Ao
g r At e 7 ) Viiay QG \-ILG JJVL&LAUG.LI h.l\JA.L;'L_D. 43345 Wili THALLIT WS LW UST MAllhGd ULLIITLTHLIGL THWALLIVIS
later to describe the dynamics of the set of reachability. To give a mathematical formulation
to these considerations, it is necessary to analyse the topological properties of the set of

_____ 1t

IedbllleLlLy .

4. Boundary solutions. Theorem 4.1. Suppose z(f), £, <{f<(t, 1is the solution of (2.1}
and the converging sequences {t; -—» fg, ¥~z {t.), i > o0 are obtained. Then i, will be sought and
the sequence of solutions y,; (), fy <t < ¥, i > iy of the inclusion (2,1), such that y; () ==y,
and

[ o £4Y V8. . D) R e
testssmindty, 14}
Proof. We shall define the vector-function & R¥# _, g» using the condition

By virtue of the convex;ty and continulty of G{tz} the function b,y ¢ is continuous.

We shall define &,y =0b{y 2 (t)) and shall consider the differential equation
=b(ty (41)

where the equation is understood almost everywhere. The conditions of the theorem of the
existence of Caratheodory's solution hold for (4.1). The solution of (4.1) serves as a
solution of (2.1). By virtue of the assumptions about &{t, ) and the definition of b {ty) the
solutions of Eq.(4.1) w () & —m <t 4% >0 with the boundary conditions w(#) =y satisfy
an inequality of the Gronwall type for the deviation |y;{t) — z($|. We can therefore define
them when ¢, {t< ¢, starting from some i= i, and y; () satisfy the conclusion of the theorem.

Hence we obtain a number of corollaries using the indirect method. For M (i, oo} we
shall put

(M, A(M, 2, Ao}k = |J (¢, A(t, to, Ao)) C R™*
teM
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Corollary. 4.1. Suppose A4,C R* M C [ty o) are open sets. Then {M, A (M, t,, 4} is
an open set.

4,2, Suppose A, (" R* is an open set. Then 4 {f,1,, 4,) is open for 1, > ¢,

4.3, Suppose x; > a2r = A (T, 16, X (o)), ;=T as i-—>o00, 1; £ 4 (4, e X (). Then any
solution {2.1) z (), , <t T with the boundary conditions x (i) = X {t,), 7 (I) = 20 satisfies

the inclusion
(1) € 04 (¢, ty, X () when £, < t<T (4.2)

4.4, Suppose ar & A (T, te, X (ty)), xr £ A (L, g, X (ty)) when t; < t < I. Then any solution of
the inclusion (2.1) z (1), t, <t< T with the boundary conditions =z (tg) &= X (t,), z=(T) = z7
satisfies the inclusion (4.2).

4.5, Suppose 2 (t), t,<<t<T is the solution of (2.1}, which satisfies the houndary
conditions z(t) = X {ty), z(T) = 84 (T, 15, X {ty)). Then =z (t) satisfies the inclusion (4.2).

We shall call the solution of (2.1) =z (t), t, <<t< T, which satisfies (4.2), a boundary
solution from the initial set X (4), whilst it is not generally required that (4.2) holds when
t=1T.

5. Right-continuity of the bound of the set of reachability. consider the
mapping (2.3).

Theorem 5.1. The following relation holds for (&, T):

B(9X (2), 0X (t + o)) >0 as 00+

Proof. The continuity of X (¢ implies the convergence a(X (), X(#+0) -0 as o-—0+.
Then () >0 will be obtained with respect to «>0 and zedX (9, such that Vi{z) N X (t+ o) £
¢ when oe&l0, o (2)). We shall isolate the finite subcovering 48X (t) C{lJ Vo (x;) with respect
to 1<i <k from the covering of the compactum 4X () by means of the sets V,;(z), re dX (), and
shall assume 0= {ming,{z;) with respect to 1<i<<4. Then B{BX (), aX (1 + o) K 2a for o= [0, o).
Hence the statement of the theorem follows by virtue of the arbitrariness of a>0.

The continuity of X (f) simplifies the verification of the right-continuity of the bound

0xX (t).
Corollary 5.1. The bound &X (f) is right-continuous at the instant & &g, 7),1.e.
a(@X (@), 8X (t+0)) =0 as o—0+ when, and only when, B(@X (t+ o}, dX (t)) >0 as o—0 +.

Theorem 5.2. The bound of the set of reachability 84 (¢, {, X {f,)) 1is right-continuous
in the set [t,, ®).

Proof. The set of reachability 4 ()= A4 (¢ t, X (b)) is continuous in [4, o) according to
Theorem 2.1. Then by virtue of Corollary 5.1 it is sufficient to prove that
B@PA(@W 40,04 () —0 as 0 — 0+, t' & ity 0} (5.1)
According to Corollary 4.5 and the definition-of 4 (f), the solution z, (e dd (1), ¥ I +
¢ of the inclusion (2.1) will be obtained for any point =z,=84 (f -+ o), such that gz { L=
z4. It follows from the continuity of A4 () and 6(,2) that Jz, (' + o) —z #)]—-0 as o0-0+
uniformly with respect to z,e= 84 (¢ + o), which gives (5.1).

Theorem 5.3. The following two conditions are equivalent:
(i) the bound 90X (t) is right-continucus at the instant t' & [t,, T),
(i) 8>0 will be obtained with respect to & >0, such that

XNV (0X ()X (' +0) for 6 =10, 8) 5.2)

Proof. (i) = {i). BAssuming the opposite, we obtain o6;—04, s -2, et X{), s X{t+o) i
w. =z & X (' + 0y, 2 —z, will be obtained with respect to the continuity of X (3. Then ;" —
7, 7" = 0X (' + o;) will be obtained. By virtue of ()=, & dX (1), which contradicts the inclusion
z, = Int X (¥').

(i8) =» (i). We shall assume the opposite. Then o6y —0+, k—oo and e>0 will be obtained
by virtue of Corollary 5.1, such that B (@X (¢ 4 ox), 3X (#)} > 3e. We can choose s IX W + o) 7 —
z, = X (), such that Vg (=) NaX )= Q. We shall obtain Vy,{z )NéX {¢)= @. Hence z,=IntX ()
and, according to (i), V,{z,) C X (¥ +0) when o e[0,8), which contradicts the convergence o;—
0+, 2i — 2, 7y & 0X (¥ + 04), 1> o0,

6. Properties of the mapping of the linear approximation e¢-— X, ().
Theorem 6.1. Suppose V& K (R, Int V== . Then 04 =0, (t) >0 will be obtained, such

that the set X6d=et {Ulz + 06 (@ 2)] with respect to z €& X} is open for any open set X TV
and o < [0, 6,y).

Proof. L >0 is obtained, such that
a (G 2), Gt ) K Ljz —=z"| when 2/, 2" V

We will assume o0p= 0,5 L-!. We shall formulate z,= x4 0gn zee= X, o= G (4 z). It is sufficient
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to show that for oe=(0,0) and small }z-—=z,| the equation z==2" 4 o¢ is solvable with respect
to =6 2), 2= X. Suppose z;,¢;, are already defined. We assume z =z —og_, and subject
the choice ¢ G (t z;) to the condition: g —g¢ ;1<|g— %4] when ¢=6(t, z). Then |21 —z 1<
olg — g I<ob]lz,  —z .|. Hence z—2', s —g =6t 2') as i—oo, =2+ o and o — et —
ey lz — 2,2z — 2z, ). This inequality and the openness of X imply the inclusion e X for
small jJz—z.0.

Corollary 6.1. Suppose Ve K (R, Int V% . Then 04==0,(t) >0 will be obtained, such
that the inclusions z&=X CV,¢&E6(t, z), 2 + 6¢ &= X5 (t), 0 = [0, 0y) imply the inclusion z&
8xX.

In the same way as Theorem 5.2 was obtained from Corollaries 4.5 and 5.1, from Corollaries
5.1 and 6.1 we obtain the characteristic form of the bound 8X,.

- 1. [ A P e d b ke

Theorem 6.2. Suppose X & K (R"™. Then the bound &6X, is right-continuous with respect
to 0 when o =0.

7. The fundamental localization theorem. Theorem 7.1. For (2.4) to hold, it is
necessary and sufficient that the following conditions hold:

(i) the bound 4X (!} is right-continuous in the set ¢ & l4, T);
{ity the following relation holds:

Xo() ~X (t + o) whenz € 0X (1), ty < t< T (7.0)

Proof, The necegsity of condltmns () and (i) follows from Coreollary 3.1 and Theorem
5.2. Conversely, suppose conditions () and (#) hold. By virtue of () and Theorems 5.3
and 6.2, Eq.{(3.7) holds when zeInt X (). Hence we obtain the statement of the theorem,
together with condition (i) and by virtue of Corollary 3.1,

The rest of this paper will interpret this theorem, using the continuous differentiability
of the bound of the reachable set.

8. Relation at a point of a continuously differentiable bound. In accordance
with the natural representations, we will say that, in the neighbourhood of the point e
X (i), ¢ = t,, T) the bound 6X (i) is an (n — i)-dimensional C(!-surface which is continuously
time-differentiable, if the bound 4dX (f) can be represented using the followng diffeomorphism
in the neighbourhood of &z’ for t close to '

e, 2)=% + ze1+ ... + Znafna + Pl 3 ln, {8.1)
ze= R, o, 0)=0

i.e. (8.1) serves as the diffeomorphism @X ({) in the neighbourhood z' to some neighbourhood
of the origin of coordinates z €& R™1. We assume the function p{f,2) is continuously
differentiable; e;,1 i< n are unit mutually orthogonal vectors, whilst ¢, 1<<i<{n—1
serve as tangents to, and ey is a normal to, 94X (#) in z’. Hence it follows that the vectors
@, = ¢ (t', 0)/9z; are tangents to 48X (') in z', whence by virtue of (8.1) we obtain
P, =0 when 1 <i<n~1,t=1,2=0 {8.2)

If in addition Ve () {1 Int X (t') == (& when & >0, then in the neighbourhood z’ on one
side of @8X (t') the interior Int X (') is arranged, and on the other - the addition R"\ X ('),
whilst by virtue of the continuity of X (#) this property is also preserved for t close to t.
In this case we will say that 4X (t') separates Int X (#) and R*™\ X (#)in the neighbourhood
of z'.

We shall write X ()&= A (', 2), if the conditions described above hold. Unless stated
otherwise, we will assume that the normal e, is external,

We shall fix ¢.=6G (. 2'). which satisfies the ineagu nality

------------- G E G (Y, 2"), which satisfies inequal
g en) < {gp» &> when g E G (t', z") (8.3)

Lemma 8.1 Sunnnga X f.Y ez A Y Then

Lemma 8.1. Suppose X (Y& A{t', z'). Ther

X (t') + 06 (', 2) &= X () + ogq
Xo ()5 X (t') + oG (¢, ')

Proof., We have X ()4t agC X (#)+ o6 (#,z"). We shall indirectly prove that e>0 and
s ) wi1l e shdEademd wit roommant e ou ™ 0 satriafuing +ha inclugiosn
o3>0 will be cbtained with respect toc p >0, satisfying the inclusion

...... Feout Tomaary +ha L£4wemd oéod o 1A o tin will pamuma that +tha samcvanco e 0¥ L
wzteubc LLAEDS LIS L ALSL DLQUTiutiic L LEET A CHUNG « T #Fiild QoOIWUT Uil Wac QC%UCIAD‘- U; =V T s

? '] '3 1 3+ £
g0+, m=z'tog la—ri<a weXlt) et ), o' -2, a'—ogs6 ), Zévg‘.u(x(f)*\‘-ﬁxl}n)

is obtained. Then for some i, we have

zi' + S; (g — qo) & VU,'M/Z (X (¢)) when i2io
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which contradicts the continuocus differentiability of 4X (). The second statement of the lemma
follows from the continuity of @& (¢ 2).
From Theorem 3.1 and Lemma 8.1 we have

Theorem 8.1. Suppose X (*)e= A (', 2'). Then X4 (") =x (t") + oge. From the definitions and
continuous differentiability of X () there follows

Theorem 8.2. Suppose X (+) & A(t', 2'). Then
X'+ oy Xty +op, (', O)en; 0, (', 0)==0p(t’, O)jit
Note that the relation

X () + ogo~ X (') - op; (', 0)en, when X(-)EA(f, 2)

holds when, and only when,

Py {t', 0) = <{gm &> (8.4)
which, bearing in mind (8.3), we shall rewrxite in the form
ps (', 0) = max {q, e,> with respect to ¢ & G (', 2) (8.5)

Then from Theorems 3.1, 8.1 and 8.2 we obtain a basic localized statement for the
continuously differentiable bound dX (f).

Theorem 8.3. Suppose X (-)= A (t',z'), Then the following conditions are equivalent:

() Xe () =X (' + o), (t) condition (8.5) holds.

By virtue of Theorem 7.1 the fundamental relation {8.5) indicates that the rate of
displacement g (t’, 0) of the bound 84 {t) of the set of reachability 4 {f) at the point

z' €04 (') in the direction of the unit external normal e, equals the maximum projections
on to e, of permissible velocities g at this point.

9. The equation in state space. We shall consider the continuous function B {,a):
A" > R  and shall formulate X () = {z € R™ B (¢, z) <{0}. Unless stated otherwise, as before
we will assume that as definite X () is a continuous mapping [¢, T)— K (R?), T < [t,, o).

Suppose the point (t', z') satisfies the equation B (t', 2') = 0 and the function B (¢, z) is
continuously differentiable in the neighbourhood of (¢', z'), whilst grad B {¢,z')==col (B, .. .,
B.)#0. For fixed t’ we shall denote by X5 (') the set z’, such that (¢,z') satisfies the
conditions formulated above. It is clear that 8XPB ()T 8X (') and the inclusion z' & 8XB (1)
implies the inclusion X ()& A (t, 2'). According to (8.1), we can write

B(t 40,2 +ep(t +0,0)=0 B 2)=0
Differentiating with respect to o and substituting (8.4) here, we obtain
By (t', ) + <grad B (t', '), €n)<qq, €n> = 0
By virtue of the parallelism of e, and grad B (', z’) this gives
Bi{t',2") +-<grad B (', 2"}, g» = 0

Bearing in mind the definition of ¢, (8.3) and omitting the primes, here we finally
obtain that when z & dXE (f) the equation

B (¢, z)+ max {grad B{t, z),¢d>=0 (9.1)
g6, x)

is equivalent to Eq.(8.5). Then from Theorems 7.1, 8.3 and the inclusion X ()& A(f, z) when
z €& 0XB (t) we have

Theorem 9.1. For (2.4) to hold it is necessary and sufficient that the following
conditions hold:
(i) the bound 8X (f) is right-continuous in the set t & lt,, T),

(i) Xo~X (t+ o) vhen ze aX (1) \ 9XB (1), ¢ & lto, T),
(iily when = dXB(t), t = lty, T) condition (9.1) holds.

Remarks. 9.1. Since the inclusion 2&dXB () using the definition 6XB(#§ implies the
equation B (4, 2)=0, Eg.(9.l) is not considered outside the set of points (4 2), satisfying
the equation B {t, z) = 0.

9.2. iIn the notation of system (l1.2) the eguation in the space of the states (Bq.{9.1})
will be rewritten in the form

B, +max<grad B, f, =0; B=RB(t, z), f=f( 2, u) 9.2)
ugll
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Let us consider the system 2z = f(z,u), f(0,00)=0,0= U, ues U and denote the minimum time
necessary to reach point « from the origin of coordinates by ©(z), i.e. 8(z) is a Bellman
function in the problem of transferring the system z"= —f(z, u) to the origin of coordinates
in the minimum time. Assuming B (,z) =0 (s) —t, we obtain a Bellman equation from (9.2) for
the problem of the limit speed of response

max ¢} (z, u), grad 8 (z)) =1
uz=l
i.e. Bellman's equation serxves as a special case of Eqg.(9.2).

10. The equation in conjugate space. This equation was first cbtained for convex
sets of reachability /13, 14/, and its heuristic derivation was given in /15/ for non-convex
sets of reachability. Here we need a generalization of the idea of a support function to
non-convex sets /15, 16/. Suppose X ()& A(t',2'). For z& 0X (t) we shall denote the external
normal to 4X () in z by s(t, z) =0. Consider some open neighbourhoods %, V°(z), V° (s) for
t',z',s =s(t',z') respectively. For t& %, s&V°(s') we shall use z(t,s) C V°(z') to denote the
set of points (possibly empty) z& 0X () (| V° ('), in which s serves as an external normal to
X () in z. We shall use the formula

def ’

r, s)é(z tshsd>= |J {(z,5) when t=x,s=V°(s) (10.1)
xex(t, 8)

to define the supporting mapping (possibly multivalued) in the neighbourhoed x X V°(z') X V°(s')

of the point (t’, z',s’) with values in R. The asterisk indicates transposition.

Theorem 10.1. Suppose X ()& A (', z'); the function p(t,z) 'in the representation (8.1)
is doubly continuously differentiable, whilst the matrix of the two partial derivatives is
non-degenerate with respect to z

det p,* (', 0) 5= 0 (10.2)

Then the open neighbourhoods x, V°(z') and V°(s) will be obtained for t’,2' and s', such
that Eq.(10.1) defines a single-valued continuously differentiable support mapping with values
in R, in the neighbourhood x X V°(z') X V°(s') whilst

z(t,s)=r*(s) &V (z')whent=x, s V° (s) (10.3)
re(t sy =p @, 0I5 Ml (10.4)

Proof. The vectors ¢, (42 are tangential to 49X (t) at the point ¢ (t,z). Therefore the
condition of orthogonality of s to 98X () in ¢(t, 2z will be written as

@y (2), s =0vwhenti<<i<n—1 {10.5)
According to (8.1), this condi'éion will be written in the form
Keps & Py (¢, 2)+-<e;, 5> =0, igign~1 (10.6)

By virtue of (8.2) the vector z2=0 serves as a solution of (10.6) when s=¢,t=1¢. A
unique continuously differentiable function z(,s), serving as the solution of (10.6) , will be
obtained using the theorem on the implicit function by virtue of condition (l0.2) for s,
close to t,¢. Hence the support mapping will be written in the form r(t z(t s, ) = <@ (2 (4 3)), &
Differentiating it and bearing in mind that, according to (l0.5), @;*s=0, (P25 5 = (3 Q. 5 =0,
we obtain Eq.(10.3) for z(t,s)= ¢ (t, 8 = @ (4 z(t s). Since the vectors e, and ¢ differ only by
a positive multiplier,<s,#> =0 when 1 i<<a—1, and from (8.1) we obtain r(ts)=<" s> +p(t
z2(t, &) }s¢). Hence and from (8.2) we obtain (10.4).

Bearing in mind (10.4), we shall write Eq.(8.4) in the form r, = <qo & 8" Il = <go, s>
Bearing in mind (8.3) and (10.3) and omitting the primes, we shall rewrite it in the form
ry (t, s) = max g, s> with respect to ¢& G{t, r* (¢ s)) (10.7)

We shall denote by 0X' (') the set of points 2’ & X (t'), such that X ()& A (¢, z), whilst
the function p (% z) is doubly continuously differentiable and satisfies (10.2). Consider
a single-valued support mapping r(f, s), which is defined by Eq.(10.l) in some neighbourhood
% X V°(z') X V°(5) of the point (t',z’,s), s % 0 and which satisfies the conclusion of Theorem
10.1. We shall denote the family of all such single-valued supporting mappings by {r(f,s)}.
Then from Theorems 7.1, 8.3 and 10.1 we have

Theorem 10.2. For Eq.(2.4) to hold, it is necessary and sufficient that the following
conditions hold:
(i) the bound @X (¢) is right-continuous in the set t& {tg, T),

() Xo= X (¢t +0) when z& dX (t)\ X" (1), t & lto, T),
(i) the supporting mappings {r (¢, s)}, t E lt,, T) satisfy Eq.(10.7).

Remark 10.1. For system (1.2) Eq.(10.7) will be rewritten in the form /13-16/: r; = max
{f (t, r4*, u), s» with respect to u & U. Since the variable s is conjugate to z with respect to
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the scalar product <, s», Eqg.(l0.7) is called an equation in conjugate space.

11. Equations in parametric form. we assume that X ()& A (t/, 2'). Here it is
convenient to write the diffeomorphism which specifies dX (t) in the neighbourhood of the
point z’ & 8X (f') for ¢ close tot' in the more common form: z = p (t, v), v € R, p(t,v) = (Y & =
p (', v'), whilst p (£, v) when ¢ == const, near to ¢, is a diffeomorphism of some neighbourhood of the
point v’ & R*' to 44X () in the neighbourhood z'. The diffeomorphism (8,1) is a special case of
p {t, v). On the other hand, the diffeomorphism 2z — v {2} will be obtained, reducing p {f, v} to the form
(8,1): p{t, v()) = 2" -} 28, +. . . - Zna€na + p {f, 2) ¢,.llence (8.4) will be rewritten in the form {p; (¢,
v'), €n> = {qq, €;>, which in turn can be written in the form of the inclusiocn

p (V)Y EY (@ pE,v) en) (11.1)

¥ (t, z, 8} & {g= R™ (g, s> = max {¢’, s» with respect to ¢ & G {t, 1)}

Having the matrix of partial derivatives p, (¢, V), we can use some method to express the external
normal s (f, p (¢, v)) to OX (f) atthepoint p(t,v)by p,(t, V) using some continuous function h: s (t,
p{t,v)) = h(p, (£, v)) %= 0. Thenomitting the primes, we rewrite (11.1) in the form of a differential
inclusion in partial derivatives

pEY(E phip) p=p{ ) (11.2)

We shall denote by 84X () ¢ X () the set z & X (f), such that X (-} & A (¢, z). We shall take
some family {p (t, v)}, t, <{ £ << T, consisting of the above locally definite diffecmorphisms p (¢, v},
such that any diffeomorphism snecifies 84X (f) in the domain of its definition and any point z& X4 (1),

t e= {ty, T) belongs to the domain of values of at least one of the diffeomorphisms p (¢, v).
Then from Theorems 7.1 and 8.3 we have

Theorem 11.1. For Eq. (2.4) tohold it is necessary and sufficient that the following conditions
hold:
(i) the bound 48X (f) is right-continuous in the set f & [t T),
(11) X~ X (t +0) when zeaX (f)\ 0X4 (1), t [ty T),
(iii) the mappings p (¢, v) of the family {p (¢, v)} satisfy (11.2).
We shall put ¢ (¢, 2,5 = ¥ (¢, 2, )(1G (¢, z) and consider the set OX¥ () (T X4 (f) of points in
which P (¢, p {t, v}, k (p,{{, ¥))) consists of a unique vector. Then the system
=9 phip)) p=p(tY) (11.3)
will be a special case of (11.2). Therefore from Theorems 7.1 and 11,1 we will obtain

Corollary 11.1. For Eq.(2.4) to hold it is sufficient that the following conditions hold:
{i} the bound 48X (#) is right-continuous in the set (& [te. T},

(1i) Xg& X (t + 0) when =z dX (t) \ 0X* (t), t & [ty, ),

(iii) the mappings p{f, v) of the family {p(f,v)} satisfy the partial differential Egs.(11.3)
when p (¢, v)es 8X® (¢).

Note that Egs.{11.3) for (1.2) can be rewritten in the form

Dy == f (t’ b, u (ta D, pv)) (11.4)
where u (¢, py p») is obtained from condition (8.5):

<,f . pyu (t9 By Pol)s B (po)) = H‘ig_é(f ¢ p u), k (pv)>

It is obvious from (11.4) that p ({)=p ({, v) is a limit trajectory when v = congt.

12. Description of the dynamics of the set of reachability using boundary
solutions. Considering a section at the instant t& [, I) of the family {#(}, t, <<t << T
of all boundary solutions with the initial set X (f,), we will obtain the bound of the set of
reachability @4 (£, tp, X (o)), which is characterised by the set of reachability 4 (f) = A4 (% &,
X () itself. Therefore it is possible to describe the dynamics of the set of reachability
using boundary solutions.

wWe shall obtain the necessary conditions of boundedness of the scolutions. For A(ye
A (¢, 2) we shall denote by s(f, z) the external normal to 84 (f) at the point ¥ & 64 (t), which
continuously depends on ¢, . Then Theorems 7.1 and 8.3, which are definitions of the

boundary solution and differentiability, give the following result.

Theorem 12.1. Suppose z (), 1, < t<T is a boundary solution from the initial set
Xt S0 Th A()s A,z (). Then &>0 will be obtained, such that for all = {t' —e¢,
t' 4+ ¢), for which the derivative «,(f) exists, the following condition holds:

& (), 5 (¢, = (8))) == max{g, s (¢, z (¢))> with respect to g& G(t, z () (12.1)

Below we assume that U is a compactum and the function f (i, r,u) in {1.2) is continuous
together with the matrix /. {f, 2, 4} of its partial derivatives. This ensures that the above
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assumptions with respect to (2.1) hold. We shall denote by A (¢, s) the arbitrary scalar
function which is measurable when s = comst, continuous when ¢ = const, and for which the
summed function A, (£) > |A(t,5) |, ¢ [a, bl, s& X will be obtained for any X & K (R") and

[a, bl C [y, T). wWe shall denote the n X n-dimensional unit matrix by I. The following
theorem shows that the evolution of the external normal s (t) = s (¢, z(f)) can be described using
the conjugate system of Pontryagin's maximum principle.

Theorem 12.2. (The maximum principle). Suppose z (t), L, < ¢t<<T is a boundary solution
of (2.1) from the initial set X (), which satisfies (1.2) with some measurable control
wleU, e, T); A()S A, z());s 0 is the external normal to 94 (1) at the point
z(t')= 44 (t'). Then e&>0 will be obtained, such that the condition

(@, z (t), v (t), s(t)) = max {f (¢, z (£), u), s (£)> with respect to usEU (12.2)
where s()=¢, and s(f) almost everywhere in (t' — ¢, ¢ + &) satisfies the equation
§ =M )T — ¥l fu* = £2* (8 2 (), 4° (1) (12.3)

holds for te (' — e, t' + &), £for which the derivative z'(f) exists.

Proof. According to Theorem 12.1,it is sufficient to prove that the external normal
s(t,z()) to o4 () in =z () when te (' —e,t' +¢) is specified as the solution of (12.3) with
s(¢') = s'. Consider the solutions (1.2) =z,() when te|[t,t +e with the control u=u°(t) and
the initial points =z, (#) =494 (#), which £ill 44 (#) in the neighbourhood of =z (#). The points
z (t) of these solutions will describe the (n — 1)-dimensional (!-surface T (), which
passes through z(f) and belongs to the set of reachability A4 (/). Then by virtue of the
continuous differentiability of 44() in =z (#) the tangential hyperplanes tanT (1) and tan 84 (?)
to T'(f) and J4A() in z () coincide. Therefore, it is sufficient to obtain a description of
the evolution of the vector s(f), which is normal to tanT (). The generatrices e (2 are
generally ncn-unit, and the hyperplanes tanT () can be described using a system in variations

ef=fe, 1<i<n—A, f,=1( z(t), ¥ (@)

The condition of the orthogonality of s(f) to e (#) 1s written as (e (), s(t))=0. By virtue
of the relations <e(t'),¢) =0,1<i<nr—1 differentiation of this system gives the sufficient
condition for its satisfaction: <(feei(t), s(t)) -+ <ei(®), 8 (£)> =0, i.e. <), () + st =0, V<t
t +e This condition holds if s (f) + fx*s () = A s (), where A is an arbitrary number, in particular
A= A( 5, which gives (12.3).

Assuming A (¢, s) = 0, we obtain a standard formulation of the maximum principle. The
presence of A (f,s) does not introduce fundamental differences, since it only affects the
length of the vector s(f). Specifying the different initial conditions s (t,), which correspond
to the external normals to 48X (¢,) and z (t,) &dX (t,), and integrating (1.2), (12.3) in [, 7)
with the control obtained using (12.2), we can construct a family of boundary solutions. The
exponential increase in ||s(#)|| as t increases, which complicates the numerical calculations,
is inherent in alitomatic control systems. Therefore the choice of A (f,s) can be subject to
the additional condition |js (t)|| = const, i.e. (s (), s(f)) =0, whence we will obtain A= f.*s, s>
{s,s)7. Substitution into (12.3) gives the normalized conjugate system

s =[Kfz*s, ) | s 2] — f:*]s (12.4)

13. The optimal equation. we will say that z (t), t, <t T, z(tp) & X (t,) is an
optimal trajectory - with respect to speed of response - from the initial set X (¢,) if the
trajectory z, (t), to <t < it,< T, does not exist, such that z, (to) = X (L), z (,) =z (T). From
Corollary 4.4 we obtain the characteristic form of these trajectories.

Theorem 13.1. Suppose z (1), , X t<{ T is an optimal trajectory - with respect to speed
of response - from the initial set X (f,). It is then a limit trajectory from the initial set
X ().

For the optimal control problem in its Lagrangian form the finite point of the optimal
trajectory belongs to the bound of the set of reachability in an extended space /14/. Then,
according to Corollary 4.5, the optimal trajectory is a limit trajectory. The above enables
us to reduce the finding of optimal trajectories to obtaining limit trajectories.

14, The classification of equations of the set of reachability. we shall
list the most common methods of representing sets: the pointwise representation, under which
the set is characterized by the set of points of which it consists, without reduction to a
description using the other characteristics; representation using an inequality; representation
using a support function or a support mapping; representation by means of the parametric
specification of the bound of the set.

Descriptions of the dynamics of the set of reachability using an integral funnel equation
and partial differential equations in the space of states which is also conjugate to the space
in parametric form, corxrrespond to these forms. Partial differential equations were obtained
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using the notation of the basic relation (8.5) in terms of the chosen description of the
surface 04 (f). Using other forms of describing 44 (f) and writing (8.5) in terms of them, we
can also obtain other forms of partial differential equations of the dynamics of a set of
reachability.

15. Comments. Bellman's generalized equation was obtained previously using the
extension principle*, and was obtained in /17, 18/ by considering the bound of the integral
funnel /19/. The use of localization of the integral funnel eguation enabled us to construct
a mathematical theory of Bellman’s generalized egquation with an indication of the necessary
and sufficient conditions for Eq.(2.4) to hold. Bellman's equation for differential games
was analysed in /3/. The function B (¢, z)} in (9.2) can be defined irrespective of any
connection with the optimal value of the criterion of quality, which is the fundamental
difference between Eq.(9.2) and the usual Bellman equation.

A description of the bound of the set of reachability is considered in /19/ using
trajectories that satisfy Pontryagin's maximum principle. R=-solutions are useful to average
the differential inclusions /20/. Corollary 4.5 reflects the integral funnel property found
by Hukuhara (see /21, p.30/). The method of local relations which describe the dynamics of
stable sets in a differential game was proposed in /22/. The generalization of the integral
funnel equation to arbitrary locally compact metric spaces was considered in /23/. The
simplest examples of the application of the above partial differential equations to
calculating sets of reachability were discussed in /24/.

The author thanks J.L. Lions for his support and interest.
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OPTIMAL ESTIMATES OF THE COORDINATES OF SYSTEMS
WITH A TIME LAG WITH RESPECT TO A SET OF CONTINUOUS AND
DISCRETE OBSERVATIONS”

V.B. KOLMANOVSKII and A.V. FROLOV

Expressions for optimal estimates of coordinates of systems with a time
lag when there are continuous and discrete measurements are established
and investigated. The effect of the amount of lag on the quality of
estimation is demonstrated as an example. The related problems of when
there are only continuous measurements were considered previously /1, 2/.

1. Formulation of the problem. Consider a dynamic system whose motion in the segment
[0, T] is described by a stochastic equation with initial conditions

rW =AM zt—h)+o &), 0T (1.1)
z(8)=0,s<0; 2(0) =z (1.2)

For system (l.1) we carry out the following continuous y(t) and discrete y; observations
at specified instants of time ¢;

v =g@Wzt—h+o 0@ 0T 1.3)
yi=ﬁi$(ti)+rici7 O<tl<T1 i:1|'~~1N; t1<tz< --.<tN (14)

In Egs.(1.1)-(1.4) the phase vector z& R, (where R, is an n-dimensional Euclidean
space) ; the matrices A4, 0y, g, 0, with piecewise-continuous elements and the matrices PB; and r;
are specified; the time-lag constants #h,, h>>0; the Gaussian random quantities with zero
expectation and unit covariation matrix are denoted by §;, and &, and §, are standard Wiener
processes; the Gaussian random quantity Z, is such that Mz, =0, Dy= Mz.z,’. Here M is the
sign of expectation, the prime is the sign of transposition, and D, is a specified positive-
definite matrix. The random quantities §;, §;, %4, {i are mutually independent. Finally,
without loss of generality, it is assumed that y & R,, yi € R,.

Note that consideration of the time lag in the channel of measurements (1.3) is caused
by the finiteness of time necessary to carry out the observations and to work out their results.

The need to consider the time lag in a measurement channel has been noted repeatedly in
applied work (e.g. /3/). The choice of the initial conditions in the form (1.2) indicates
that the motion of the system is only described by Eqs. (1.1) for ¢> 0, and nothing is known regarding
the system when t<0. 1In accordance with this, the continuous observations (l.3) that can
be produced in the segment of time [0,k] cannot carry any data about the system either, which
was reflected in the above assumptions.

The problem consists of constructing an estimate m (I) - which is optimal in the mean-
square sense - of the vector z (T), using the results of the observations (1.3), (1.4) in the
segment [0, T']. It is known that m(T) is the conditional expectation z (T) under the conditions
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